The immediate early gene arc/arg3.1: regulation, mechanisms, and function.
نویسندگان
چکیده
In a manner unique among activity-regulated immediate early genes (IEGs), mRNA encoded by Arc (also known as Arg3.1) undergoes rapid transport to dendrites and local synaptic translation. Despite this intrinsic appeal, relatively little is known about the neuronal and behavioral functions of Arc or its molecular mechanisms of action. Here, we attempt to distill recent advances on Arc spanning its transcriptional and translational regulation, the functions of the Arc protein in multiple forms of neuronal plasticity [long-term potentiation (LTP), long-term depression (LTD), and homeostatic plasticity], and its broader role in neural networks of behaving animals. Worley and colleagues have shown that Arc interacts with endophilin and dynamin, creating a postsynaptic trafficking endosome that selectively modifies the expression of AMPA-type glutamate receptors at the excitatory synapses. Both LTD and homeostatic plasticity in the hippocampus are critically dependent on Arc-mediated endocytosis of AMPA receptors. LTD evoked by activation of metabotropic glutamate receptors depends on rapid Arc translation controlled by elongation factor 2. Bramham and colleagues have shown that sustained translation of newly induced Arc mRNA is necessary for cofilin phosphorylation and stable expansion of the F-actin cytoskeleton underlying LTP consolidation in the dentate gyrus of live rats. In addition to regulating F-actin, Arc synthesis maintains the activity of key translation factors during LTP consolidation. This process of Arc-dependent consolidation is activated by the secretory neurotrophin, BDNF. Moore and colleagues have shown that Arc mRNA is a natural target for nonsense-mediated mRNA decay (NMD) by virtue of its two conserved 3'-UTR introns. NMD and other related translation-dependent mRNA decay mechanisms may serve as critical brakes on protein expression that contribute to the fine spatial-temporal control of Arc synthesis. In studies in behaving rats, Guzowski and colleagues have shown that location-specific firing of CA3 and CA1 hippocampal neurons in the presence of theta rhythm provides the necessary stimuli for activation of Arc transcription. The impact of Arc transcription in memory processes may depend on the specific context of coexpressed IEGs, in addition to posttranscriptional regulation of Arc by neuromodulatory inputs from the amygdala and other brain regions. In sum, Arc is emerging as a versatile, finely tuned system capable of coupling changes in neuronal activity patterns to diverse forms of synaptic plasticity, thereby optimizing information storage in active networks.
منابع مشابه
Increased Expression of the Immediate-Early Gene Arc/Arg3.1 Reduces AMPA Receptor-Mediated Synaptic Transmission
Arc/Arg3.1 is an immediate-early gene whose expression levels are increased by strong synaptic activation, including synapse-strengthening activity patterns. Arc/Arg3.1 mRNA is transported to activated dendritic regions, conferring the distribution of Arc/Arg3.1 protein both temporal correlation with the inducing stimulus and spatial specificity. Here, we investigate the effect of increased Arc...
متن کاملArc/Arg3.1: Linking Gene Expression to Synaptic Plasticity and Memory
Arc/Arg3.1 is an effector immediate-early gene implicated in the consolidation of memories. Although cloned a decade ago, the physiological role of Arc/Arg3.1 in the brain has remained elusive. Four papers in this issue of Neuron address this function. These studies show that Arc/Arg3.1 regulates endophilin 3 and dynamin 2, two components of the endocytosis machinery. Genetic ablation of Arc/Ar...
متن کاملMSK1 regulates transcriptional induction of Arc/Arg3.1 in response to neurotrophins
The immediate early gene activity-regulated cytoskeletal protein (Arc)/Arg3.1 and the neurotrophin brain-derived neurotrophic factor (BDNF) play important roles in synaptic plasticity and learning and memory in the mammalian brain. However, the mechanisms by which BDNF regulates the expression of Arc/Arg3.1 are unclear. In this study, we show that BDNF acts via the ERK1/2 pathway to activate th...
متن کاملArc/Arg3.1 Interacts with the Endocytic Machinery to Regulate AMPA Receptor Trafficking
Arc/Arg3.1 is an immediate-early gene whose mRNA is rapidly transcribed and targeted to dendrites of neurons as they engage in information processing and storage. Moreover, Arc/Arg3.1 is known to be required for durable forms of synaptic plasticity and learning. Despite these intriguing links to plasticity, Arc/Arg3.1's molecular function remains enigmatic. Here, we demonstrate that Arc/Arg3.1 ...
متن کاملThe activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) is required for memory consolidation of pavlovian fear conditioning in the lateral amygdala.
The activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) is an immediate early gene that has been widely implicated in hippocampal-dependent learning and memory and is believed to play an integral role in synapse-specific plasticity. Here, we examined the role of Arc/Arg3.1 in amygdala-dependent Pavlovian fear conditioning. We first examined the regulation of Arc/Arg3.1 mRNA and prot...
متن کاملArc/Arg3.1 Mediates Homeostatic Synaptic Scaling of AMPA Receptors
Homeostatic plasticity may compensate for Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP) and depression (LTD), by scaling neuronal output without changing the relative strength of individual synapses. This delicate balance between neuronal output and distributed synaptic weight may be necessary for maintaining efficient encoding of information across neuronal network...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 46 شماره
صفحات -
تاریخ انتشار 2008